(a)磁场辅助微细电火花加工的工作原理( Heinz, K.; Kapoor, S. G.; DeVor, R. E.; Surla, V. AnInvestigation of Magnetic-field-assisted Material Removal in Micro-EDM forNonmagnetic Materials. J. Manuf. Sci. Eng. 2011, 133, 021002 (9 pp);(b)常规微细电火花加工的微孔截面;(c)磁场辅助微细电火花加工的微孔截面,加工条件与(b)相同。 混合工艺涉及微细电火花加工和磁场辅助的复杂组合,以便通过提高碎屑去除率和磁流变比来改善加工性能。与高纵横比和/或盲区特征的微细电火花加工相关的问题之一是难以冲洗加工区的碎屑。这些碎屑颗粒通过产生电弧和短路导致不稳定的加工,并降低磁流变比和表面质量。为了解决这些问题,在微细电火花加工过程中引入了磁场,以改善碎屑循环。实施垂直于电极旋转力的磁力产生合力,在加工过程中有效地将碎屑移出孔。磁场辅助微细电火花加工中的磨粒受到两种力:磁力和离心力。通过磁力和离心力的矢量相加,给出了碎屑颗粒上的合力,这有助于将碎屑颗粒从机器区域冲出,从而提高加工稳定性和MRR,减少刀具磨损,并整体改善微细电火花加工性能。在类似的工作条件下,与传统微细电火花加工相比,磁场辅助微细电火花加工可以产生更高的长径比孔。磁场的应用有助于微细电火花加工中的间隙清洁,因为增加了间隙外的碎屑传输。由于磁场的应用,碎屑清除能力增强,导致MRR增加。上图(a)显示了磁场辅助微细电火花加工的示意图。从图(b)和(c)(38)可以理解磁场辅助微细电火花加工中微孔纵横比的增加。 线基PTA激光混合AM已显示出构建具有高沉积速率和近净形状的大型组件的潜力。它结合了两种热源的优点(即PTA的高效率和激光的高精度),并且显示出比PTA或激光沉积工艺本身更大的优势。例如,与PTA沉积工艺相比,混合沉积工艺形成小孔的可能性较低,且与激光沉积工艺相比,沉积速率和工艺公差较高。此外,它允许独立控制沉积速率和珠形状,这是单热源难以实现的。在沉积过程中,单个焊道是最小的基本单元,它决定了沉积零件的最终表面质量和尺寸精度。因此,了解单个工艺参数如何影响焊道形状以及如何实现目标焊道尺寸是至关重要的,以便实现一个可靠的工艺,以沉积各种几何形状。