对于普通材料来说,其性能多少会因长期暴露在某些特定环境中,受周围介质的化学或电化学作用的影响而发生改变,比如说长期暴露在户外大气的钢铁结构件就容易被腐蚀。因此为了保护材料表面,往往需要利用热喷涂技术制造一个特殊的工作表面,使其达到:防腐、耐磨、减摩、抗高温、抗氧化、隔热、绝缘、导电、防微波辐射等一系多种功能。
对于普通材料来说,其性能多少会因长期暴露在某些特定环境中,受周围介质的化学或电化学作用的影响而发生改变,比如说长期暴露在户外大气的钢铁结构件就容易被腐蚀。因此为了保护材料表面,往往需要利用热喷涂技术制造一个特殊的工作表面,使其达到:防腐、耐磨、减摩、抗高温、抗氧化、隔热、绝缘、导电、防微波辐射等一系多种功能。
氧化铝在一定的高温条件下具有优良的力学性能和化学性能。在充分烧结后对无机酸和盐类具有不溶性;有较强的抗氟化氢和良好的抗氢氧化钠,碳酸钠,熔融玻璃等腐蚀性能。在1700~1800℃高温时具有较强的抗除氟以外气体的腐蚀作用;可在1900℃以下的氧化性气氛或强还原性气氛中使用,在1950℃可短时间使用。
用纳米尺寸粉末作原料不能直接用于喷涂。为了解决这个问题,需要将纳米颗粒进行再处理,使之形成具有纳米结构特征的球状微米尺寸粒子,改善粒子的流动性。当等离子喷涂时,熔化颗粒经历撞击基材、展丌、平铺、凝固成准圆小薄片。熔融颗粒的液滴在基材上撞击成盘状,具体形状由表面张力、密度、粘度和液滴的速度决定。这个过程的时间很短,就形成了有小薄片叠加而成层状结构的涂层。由于从碰撞到凝固的时间很短,熔化颗粒无法达到前一个已铺开的小薄片边角处,从而涂层中必出现孔隙。
处理后的团聚体粉末
制备单一的氧化铝涂层喷涂层,得到的涂层组织较疏松,结合力差,涂层在磨损时表现为脆性剥落。原始粉未颗粒的大小对喷涂后涂层的组织结构有着不同的影响,研究表明原始粉料尺寸越细小,涂层的最终性能越优越。对涂层进行x衍射分析,涂层都是由α-Al2O3和γ-Al2O3两相组成,微观结构的不同在于原始粉末尺寸不同和喷涂过程中粒子的熔融程度不同。粒子在撞击基材前的充分熔融和较高的颗粒速度,能使粒子撞击时有很好的变形,并导致层间的良好结合和低的气孔率。不同粒径的粉末制得的涂层可在一定程度上说明,涂层中γ-Al2O3相越多,则喷涂过程中粉末的熔化就越充分,所得到的涂层结构越致密。
但在Al2O3粉木中添加一定量的TiO2粉末后,制备Al2O3/TiO2复合涂层,可改善涂层的综合性能。Ti02的熔点为1840℃,Al2O3的熔点为2050℃,在喷涂时TiO2的熔化状态较好,粘结力强,在凝固时可粘结在Al2O3涂层粒子之间的孔隙中,而且与Al2O3存在成分扩散,产生固溶,从而显著提高了涂层的致密程度和粘结强度,有利于耐蚀性及耐磨性的提高。当TiO2的含量在13%~20%时涂层的耐磨性为最好。随着TiO2含量的增加,涂层的致密性逐渐提高,硬度逐渐下降,这是因为TiO2的硬度比Al2O3要低。涂层的磨损失效由脆性剥落向类似于金属材料的粘着磨损、疲劳磨损和磨粒磨损转化。
涂层的表面形貌图
应用实例:
李春福,王戎等对AT13粉掺杂纳米级颗粒Al2O3+13wt%TiO2的复合粉在等离子喷涂中的应用进行了研究,试验证明:喷涂过程中,掺杂纳米颗粒的AT13粉末平铺性能好,涂层组织均匀性提高;纳米颗粒的加入致使涂层残余应力降低;掺杂纳米颗粒的涂层组织结构明显优于常规涂层,在相近硬度条件下,摩擦系数降低,耐磨性能提高了30%以上,耐腐蚀性提高近一倍。
邸英浩,阎殿然等人使用聚乙烯醇作为粘结剂,采用液相喷雾造粒合成法将粒径均在60~150nm的Al2O3和TiO2颗粒造粒成-150~+300目的微米级喷涂颗粒,经等离子喷涂后,对涂层进行检测与分析获知:涂层中夹杂有一定量未熔或半熔的纳米颗粒;纳米13AT涂层的显微硬度比传统ATl3涂层的硬度有了一定的提高,并且在相同条件下,纳米13AT涂层的耐磨性也明显好于传统ATl3涂层。