欢迎您访问大连虹冠锦江机械设备有限公司官方网站!
热线电话:13842610026 13795193430

中科院青岛能源所The Innovation:侧链微调控诱导双通道电荷传输实现高效厚膜有机太阳能电池

在~100 nm厚的活性层中,光子激子解离后可以高效地传输到给受体界面并被收集,而在厚膜器件中,电荷传输过程中会发生严重的复合损失,从而严重降低OSCs的填充因子FF和最终效率。因此,如何改善厚膜BHJ中电荷传输是一个亟待解决的科学问题。
引言
有机太阳能电池(OSCs)由于具有轻量化、柔性、可溶液法大面积制备等优点,成为光伏领域的重要研究方向之一,特别是2015年以来新型小分子非富勒烯受体的出现极大地推动了OSCs的发展。然而目前报道的绝大多数的高性能电池均是基于~100 nm厚的活性层,对于面向应用的高性能厚膜器件报道较少。决定OSCs光伏效率的核心组件是电子给受体材料共混而成的本体异质结(BHJ)活性层,电池内部的光生激子生成与迁移、激子解离、电荷传输与复合等关键物理过程均依托于BHJ进行。在~100 nm厚的活性层中,光子激子解离后可以高效地传输到给受体界面并被收集,而在厚膜器件中,电荷传输过程中会发生严重的复合损失,从而严重降低OSCs的填充因子FF和最终效率。因此,如何改善厚膜BHJ中电荷传输是一个亟待解决的科学问题。
成果介绍
最近,中科院青岛能源所-包西昌研究员和李永海副研究员团队基于其前期开发的柔性侧链-位阻末端基础上,进一步对柔性烷基碳数进行微调控,以优化分子堆积和本体异质结形貌(图1)。研究发现,x=5和x=6时材料结晶性降低,造成吸收光谱蓝移。意外的是,中间烷基碳数的IDIC-C5Ph具有最弱的薄膜结晶性和最宽的光学带隙。尽管如此,单晶X射线衍射分析发现x=5时材料有区别于另外两个侧链截然不同的分子堆积方式。其诱导分子共轭主骨架产生两种正交的分子取向,分子排列呈现独特的网络结构,具有更多的π-π作用位点,可望实现高效的双通道电荷传输(TCCT)(图2)。针对x=5时IDIC-C5Ph材料展示出的弱薄膜态结晶性,科研人员通过多种后处理方式(热退火TA、热辅助溶剂退火TA-SVA)增强薄膜的结晶性(图3)。通过掠入射广角X-射线衍射(GIWAXS)发现三种材料对后处理方式具有不同的响应。对于IDIC-C5Ph而言,TA-SVA极大地增强了薄膜结晶性,诱导薄膜形成大量微晶,吸收光谱红移。TA-SVA优化后基于IDIC-C5Ph的活性层中π-π堆积强度更高且堆积距离更小,有利于分子间电荷高效传输。高分辨透射电镜(TEM)也进一步证实了这一规律。
光伏性能结果(图4)表明,IDIC-C5Ph器件经TA-SVA处理后,填充因子FF高达80.02%,且EQE大幅红移,器件转换效率PCE达到14.56%。高达80%的FF也是常规OSC器件中的最高值之一,反应了活性层内部良好的激子分离/电荷传输性能以及低的复合损失,大幅提高的FF归功于活性层内形成了具有TCCT的受体纳米晶域。考虑到TCCT特性在电荷传输及抑制复合方面的优势,构建了不同活性层厚度的系列光伏器件(图5)。常规单通道电荷传输IDIC-C4Ph器件,在膜厚105 nm时具有较高的FF(78.05%)和PCE,随着厚度增加,FF降低明显(300 nm, FF=70.12%; 485 nm, FF=65.26%),但厚膜OSCs的FF和PCE仍然高于绝大多数报道的数据,反应了此类侧链结构(烷基侧链-芳香末端)在调控BHJ形貌方面的优势。更有意思的是对于IDIC-C5Ph器件而言,在低膜厚115 nm时FF高达80.02%,随着膜厚增加,在307 nm时FF仍然高达75%,媲美大多数报道的低膜厚器件数据。在高达470 nm时,FF依然大于70%,PCE达到13%,体现了TCCT特性在厚膜OSCs研究中的优势。相关研究成果以“Subtle Side Chain Triggers Unexpected Two-Channel Charge Transport Property Enabling 80% Fill Factors and Efficient Thick-Film Organic Photovoltaics”为题目发表在Cell Press旗下的期刊The Innovation.
图文导读
图1. 材料侧链调控与基本性质
图1. (A)材料设计与思路;(B-C)吸收光谱;(D)分子轨道能级;(E)GIWAXS二维图
图2. 单晶中分子堆积方式
图2. 单晶解析与分子堆积方式(烷基链隐藏)
图 3. 材料薄膜处理前后的GIWAXS谱图
图3. 材料薄膜处理前后的GIWAXS二维图(A-C, E-G, I-K)和一维线图(D、H、L)
图 4. 光伏性能研究
图4. (A-C) J-V曲线;(D-F) FF值统计图;(G-I) EQE曲线
图 5. 厚膜OSCs性能及对比研究
图5. (A、B)基于IDIC-C4Ph和IDIC-C5Ph的厚膜器件性能;(C、D)该工作与文献参数对比 
小结
综上所述,该研究通过微调烷基碳数及合理后处理,在受体材料中诱导形成了独特的双通道电荷传输(TCCT)特性。TCCT分子堆积可以更高效地传输载流子,抑制电荷传输过程中的双分子复合,提高OSCs的FF(>80%)以及光电转换效率,并在厚膜OSCs中展现出良好的应用前景(FF>70%, PCE>13%)。该研究表明非共轭侧链对分子自组装方式具有重要影响,值得进一步深入研究。
该工作于2021年2月6日在The Innovation第二卷第一期正式刊出发表。The Innovation是一本由青年科学家与Cell Press共同创办的综合性英文学术期刊,目前有163位编委会成员,来自20个国家;45%编委来自海外;包含1位诺贝尔奖获得者,26位各国院士;领域覆盖全部自然科学。The Innovation于2020年5月20日创刊面世,目前即时指数(immediacy index)为3.571,约相当于影响因子16 (IF=16)。
本文链接:
https://www.cell.com/the-innovation/fulltext/S2666-6758(21)00015-1#
团队在该领域的近期工作
近年来,中科院青岛能源所包西昌研究员和李永海副研究员研究组(先进有机功能材料与器件团队),在有机光伏器件形貌调控和器件稳定性及柔性方面取得系列进展。研究结果表明团队设计的柔性侧链-位阻末端的结构设计可以很好的调控活性层材料的聚集特性1-2,在涉及体系的器件中均表现出改善的填充因子和效率,同时在三元器件中亦表现出优异的通用性3-5;此外发展的“网格限域”概念显著提升有机光伏器件的稳定性和柔性6
1. Y. Li*, N. Zheng, L. Yu, S. Wen, C. Gao, M. Sun, R. Yang*, Adv. Mater. 2019, 31, 1807832.
2. C. Han, H. Jiang, P. Wang, Y. Lu, J. Wang, J. Han, W. Shen*, N. Zheng, S. Wen, Y. Li*, X. Bao*, Mater.Chem.Front. 2021, DOI: 10.1039/D0QM01037E.
3. H. Jiang, X. Li, J. Wang, S. Qiao, Y. Zhang*, N. Zheng, W. Chen*, Y. Li*, R. Yang*, Adv. Funct. Mater. 2019, 29,1903596.
4. H. Jiang, X. Li, H. Wang, Z. Ren, N. Zheng*, X. Wang, Y. Li*, W. Chen*, R. Yang*, Adv.Sci.2020, 7, 1903455.
5. H. Jiang, C. Han, Y. Li*, F. Bi, N. Zheng, J. Han, W. Shen, S. Wen, C. Yang, R. Yang*, X.Bao* , Adv. Funct. Mater., 2020,30, 2007088.
6. J. Han, F. Bao, D. Huang, X. Wang, C. Yang*, R. Yang*, X. Jian, J. Wang*, X. Bao*, J. Chu, Adv. Funct. Mater. 2020, 30, 2003654.
团队介绍
包西昌,中国科学院青岛生物能源与过程研究所,研究员、课题组长,中国科学院青年创新促进会会员,研究方向主要包括光电材料与器件,纳米功能材料方面的研究与应用。
E-mail: 
baoxc@qibebt.ac.cn; 
个人主页:
http://afm.qibebt.ac.cn/kytd/tdfzr.htm

李永海,2014年博士毕业于中科院化学研究所-张德清老师课题组,现为中国科学院青岛生物能源与过程研究所副研究员,“清源学者”青年人才,中国科学院青年创新促进会会员,主要研究领域为有机太阳能电池。


文章转载自微信公众号:材料人

Copyright ©大连虹冠锦江机械设备有限公司   技术支持:青葱科技  辽ICP备2020015925号-1 
熔射,热喷涂,东北热喷涂,大连热喷涂,水轮机转子喷涂,金属表面工程,等离子喷涂,零件恢复尺寸机械密封喷涂,溶射,喷涂硬质合金,喷涂氧化铬,喷涂氧化铝钛,火焰,虹冠,锦江,机械,设备,机加工
13795193430
13842610026
返回顶部